Further Developments in Anisotropic Plasticity

Author:

Shih C. F.1,Lee D.1

Affiliation:

1. General Electric Corporate Research & Development, Schenectady, N. Y.

Abstract

A simple extension of Hill’s formulation for anisotropic plasticity which accounts for the distortion of the yield surface, Mij, the strength differential between tension and compression, αi and the effective size of the loading surface, k, has been proposed. These material parameters, Mij, αi, and k, define the initial state of the material and vary with plastic deformation. The parameters describing the anisotropic state are determined from uniaxial tension and compression tests along the principal axes. It is shown that the yield stresses in tension and compression along the three principal axes are related by a constraint equation when the condition of incompressibility is imposed. Experimental data obtained from several anisotropic materials are reasonably consistent with the constraint equation. The anisotropic plasticity formulation is also shown to describe the yield surface of different HCP metals more closely than the Hill’s theory. Based on the proposed formulation, finite element calculations have been made for the notched and the three-point bend specimens. The calculated load-deflection relationships are in good agreement with the experimental results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3