A Practical One-Parameter Integral Method for Laminar Incompressible Boundary Layer Flow With Transpiration

Author:

Thomas L. C.1,Amminger W. L.1

Affiliation:

1. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

A practical one-parameter polynomial type integral method is developed in this paper for laminar incompressible plane and thin axisymmetric boundary layer flow with transpiration and pressure gradient. The method features the use of approximations for the velocity distribution that are based on second and third order polynomial approximations for the distribution in shear stress. These approximations are used to develop solutions to the integral momentum equation for similar and nonsimilar flows. The accuracy of the method is generally within about 3 percent, except near separation where the error can reach 10 to 15 percent. The range of conditions for which the method applies covers a fairly wide range of blowing and suction rates and pressure gradients which encompasses plane and axisymmetric stagnation flows and extends to separation. Because of its fundamental nature, the approach provides a basis for generalization to heat and mass transfer and turbulent flow, and provides a framework for the development of more accurate multiple parameter integral methods for transpired boundary layer flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3