Thermal Conditions in Irradiated, Slowly Moving Liquid Layers

Author:

Houf W. G.1,Incropera F. P.1,Viskanta R.1

Affiliation:

1. Heat Transfer Laboratory, School of Mechanical Engineering, Purdue University, W. Lafayette, Ind.

Abstract

Vertical temperature distributions have been measured in slowly moving, horizontal liquid layers that were irradiated from above. Radiation was concentrated in the spectral range from 350 to 5000 nm, and the low wavelength (λ < 1300 nm) values of the liquid and substrate radiative properties were varied. Due to the effects of infrared radiation absorption, thermal conditions within the liquid did not exhibit a strong dependence on radiative properties. Conditions were characterized by a stably stratified upper layer, a core region of nearly uniform temperature, and a thin bottom layer of large, unstable temperature gradient. Satisfactory agreement was obtained between the measurements and predictions based on three-dimensional, laminar flow and one-dimensional, radiative transfer models. A weak secondary flow, which involves longitudinal vortices and/or ascending-descending thermals, was predicted by the model and was responsible for maintaining the nearly isothermal core conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3