Dielectric Elastomers for Direct Wind-to-Electricity Power Generation

Author:

Brochu Paul1,Yuan Wei1,Zhang Han1,Pei Qibing1

Affiliation:

1. University of California, Los Angeles, Los Angeles, CA

Abstract

We present a universal dielectric elastomer energy generator that can be scaled to match the requirements of the energy source. The design couples mechanical energy directly into an out of plane deflection that deforms the film. Cycling the generator between high and low strain states while applying a bias electric field switches the device between high and low energy states; charge that is injected at low energy can then be extracted at a higher potential. We present an analysis of the energy generation capacity and mechanical stability of the device and demonstrate its scalability via a compact, low energy/low deflection device and a larger, higher energy device. We demonstrate the capability of generating approximately 40 mJ per cycle in a single layer device with an active elastomer volume of only 0.57 cm3 and a maximum observed energy conversion efficiency of over 55%. We use recently developed advances in dielectric elastomer technology including interpenetrating polymer network films and carbon nanotube electrodes to improve operational reliability and present comparative results that demonstrate an increase in lifetime by several orders of magnitude over prestrained VHB acrylic films with carbon grease electrodes.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3