A Symplectic Analytical Singular Element for Steady-State Thermal Conduction With Singularities in Anisotropic Material

Author:

Hu X. F.1,Yao W. A.2,Yang S. T.3

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; International Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China e-mail:

2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; International Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China

3. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

Modeling of steady-state thermal conduction for crack and v-notch in anisotropic material remains challenging. Conventional numerical methods could bring significant error and the analytical solution should be used to improve the accuracy. In this study, crack and v-notch in anisotropic material are studied. The analytical symplectic eigen solutions are obtained for the first time and used to construct a new symplectic analytical singular element (SASE). The shape functions of the SASE are defined by the obtained eigen solutions (including higher order terms), hence the temperature as well as heat flux fields around the crack/notch tip can be described accurately. The formulation of the stiffness matrix of the SASE is then derived based on a variational principle with two kinds of variables. The nodal variable is transformed into temperature such that the proposed SASE can be connected with conventional finite elements (FE) directly without transition element. Structures of complex geometries and complicated boundary conditions can be analyzed numerically. The generalized flux intensity factors (GFIFs) can be calculated directly without any postprocessing. A few numerical examples are worked out and it is proven that the proposed method is effective for the discussed problem, and the structure can be analyzed accurately and efficiently.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3