Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades

Author:

Carstens Volker1,Belz Joachim1

Affiliation:

1. Institute of Aeroelasticity, DLR, Go¨ttingen, Germany

Abstract

The aeroelastic behavior of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time. In this paper a technique is presented which analyzes the aeroelastic behavior of an oscillating compressor cascade in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by an Euler upwind code. The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed as such that it conforms with the deflected blades at every time step. The computed time series of the aeroelastic simulation of an assembly of twenty compressor blades performing torsional vibrations in transonic flow are presented. For subsonic flow, the differences between time domain and frequency domain results are of negligible order. For transonic flow, however, where vibrating shocks and a temporarily choked flow in the blade channel dominate the unsteady flow, the energy transfer between fluid and structure is no longer comparable to that of a linear system. It is demonstrated that the application of the time domain method leads to a significantly different aeroelastic behavior of the blade assembly including a shift of the stability boundary.

Publisher

ASME International

Subject

Mechanical Engineering

Reference25 articles.

1. Platzer, M. F., and Carta, F. O., 1987/1988, “Aeroelasticity in Axial-Flow Turbomachines, Vol. 1: Unsteady Turbomachinery Aerodynamics. Vol. 2: Structural Dynamics and Aeroelasticity AGARD,” AGARDograph 298.

2. Kaza, K. R. V., and Kielb, R. E., 1982, “Flutter and Response of a Mistuned Cascade in Incompressible Flow,” AIAA J., 20, No. 8, pp. 1120–1127.

3. Bendiksen, O. O. , 1984, “Flutter of Mistuned Turbomachinery Rotors,” ASME J. Eng. Gas Turbines Power, 106, pp. 25–33.

4. Crawley, E. F., and Hall, K. C., 1985, “Optimization and Mechanisms of Mistuning in Cascades,” ASME J. Eng. Gas Turbines Power, 107, pp. 418–426.

5. Bloemhof, H. , 1988, Flutter of Blade Rows With Mistuning and Structural Coupling, Report No. 14, DGM-LTT, EPF-Lausanne.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3