Numerical Procedure for the Laminar Developed Flow in a Helical Square Duct

Author:

Sakalis V. D.1,Hatzikonstantinou P. M.1,Papadopoulos P. K.1

Affiliation:

1. Department of Engineering Science, University of Patras, GR 26500 Patras, Greece

Abstract

The incompressible fully developed laminar flow in a helically duct of square cross section is studied expressing the governing equations in terms of an orthogonal coordinate system. Numerical results are obtained with the described continuity, vorticity, and pressure (CVP) numerical method using a colocation grid for all variables. Since there are not approximations, the interaction effects of curvature, torsion and axial pressure gradient on the velocity components and the friction factor are presented. The results show that the torsion deforms substantially the symmetry of the two centrifugal vortices of the secondary flow, which for large values of torsion combined with small curvature tend to one vortex covering the whole cross section. The friction factor decreases for torsion in the range 0 to 0.1 and increases as the torsion increases further, a behavior which is more profound as the Dean number increases. Our results are stable for the calculated Dean numbers.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3