Affiliation:
1. Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104
Abstract
Intersecting bore geometries are used in a number of industrial applications such as in fluid ends of reciprocating pumps. Maximum tensile stresses at stress concentration points in the block can be many times the fluid pressure in the bores. Obtaining good estimates of the maximum stresses in the structure is necessary for making sound design decisions on the block dimensions. Finite element models of the bore intersection geometry were analyzed for ranges of bore sizes and block dimensions. Results of the finite element model were compared with predictions provided by a popular approximation method based on mechanics of materials principles. The approximation method was found to underpredict the maximum stresses in the block in almost every case analyzed. For some conditions, the maximum stresses computed from the finite element model were more than two times the predictions provided by the approximation method. Design curves, based on the ratio of the sizes of the intersecting bores, are presented for selecting block dimensions to meet desired maximum stress criteria.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献