An Additively Manufactured Four-Sensor Fast Response Aerodynamic Probe

Author:

Chasoglou Alexandros C.1,Tsirikoglou Panagiotis2,Kalfas Anestis I.3,Abhari Reza S.1

Affiliation:

1. Laboratory for Energy Conversion, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland

2. Limmat Scientific AG, Zurich 6300, Switzerland

3. Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece

Abstract

Abstract This study describes the design, development, and testing of a miniature fast response aerodynamic probe (FRAP) with four sensors (4S), which are able to perform measurements in the unsteady three-dimensional flow field. Moreover, the calibration and first results with the newly developed probe are provided. The miniature FRAP-4S demonstrates a 3 mm tip diameter, offering a 25% reduction in diameter size, in comparison to a first-generation FRAP-4S, without any loss in terms of measurement bandwidth. The 3 mm outer casing of the probe is additively manufactured with a high-precision binder jetting technique. In terms of aerodynamic performance, the probe demonstrates high angular sensitivity up to ± 18 deg incidence angle in both directions. To evaluate the measurement accuracy of the newly developed FRAP-4S, measurements are performed at the Laboratory for Energy Conversion (LEC) in both a round axisymmetric jet and an one-and-a-half stage, unshrouded and highly loaded axial turbine configuration. Turbulence measurements performed with the miniature FRAP-4S are compared against hot-wire studies in round free-jets found in the literature. Good agreement in both trends but also absolute values is demonstrated. Moreover, the performance of the probe is compared against traditional instrumentation developed at LEC, namely, miniature pneumatic and FRAP-2S probes. The results indicate that the FRAP-4S, despite its larger size in comparison to the other probes tested, can resolve the main flow patterns, with the highest deviations occuring in the presence of highly skewed and sheared flow. Furthermore, the additively manufactured probe was proven to be robust after more than 50 hours of testing in the representative turbine environment configuration. Finally, it should be highlighted that the newly developed FRAP reduces measurement time by a factor of three in comparison to FRAP-2S, which directly translates to reduced development time and thus cost during the turbomachinery development phase.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3