Efficient Steady and Unsteady Flow Modeling for Arbitrarily Mis-Staggered Bladerow Under Influence of Inlet Distortion

Author:

Phan H. M.1,He L.1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK

Abstract

Abstract Accurate and efficient predictions of the steady and unsteady flow responses due to the blade-to-blade variation as well as due to the nonaxisymmetric inlet distortion have been continually pursued. Computation of two problems concurrently has been rarely done in the past partly because of the need to perform whole annulus bladerow simulations, despite the advances in the current state-of-the-art methods with the phase-shift single passage simulations. The current work attempts to deal with this challenge by developing a new computational approach based on the principle of the multiscale method in the framework of a commercial solver (CFX). The methodology formulation relies on summation of the constituent source terms, each of which corresponds to a particular flow perturbation. The source term element corresponding to the blade-to-blade variation effect is linearly superimposed as in the classical Influence Coefficient Method. The unsteady flow field around a blade at any time instant depends only on its relative position to all its neighboring blades, so that the influences of an arbitrarily mis-staggered bladerow can be computed efficiently. In addition, the source term arisen due to the inlet distortion is calculated based on the spatial Fourier transform. A key enabler is that the source terms can be precomputed using a small set of identical blade passages. The source term is then propagated to different spatial and temporal locations depending on the combination of the mis-staggering pattern and the inlet distortion. The multiscale treatment makes it possible to predict a high-resolution flow field effects on the base coarse mesh as if a fine mesh were locally solved, while achieving a considerable computational efficiency gain. The proposed influence-coefficient and source term based method has been validated for test cases with a uniformly staggered bladerow, and for an arbitrarily mis-staggered bladerow, under a clean inflow condition as well as that subject to an inlet distortion.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3