Condition Monitoring of Wind Turbine Drivetrain Bearings

Author:

Gryllias Konstantinos1,Qi Junyu1,Mauricio Alexandre1,Liu Chenyu1

Affiliation:

1. Department of Mechanical Engineering, KU Leuven; Dynamics of Mechanical and Mechatronics Systems, Flanders Make, Celestijnenlaan 300, BOX 2420, 3001, Leuven, Belgium

Abstract

Abstract The current pace of renewable energy development around the world is unprecedented, with offshore wind in particular proving to be an extremely valuable and reliable energy source. The global installed capacity of offshore wind turbines by the end of 2022 is expected to reach the 46.4 GW, among which 33.9 GW in Europe. Costs are critical for the future success of the offshore wind sector. The industry is pushing hard to make cost reductions to show that offshore wind is economically comparable to conventional fossil fuels. Efficiencies in Operations and Maintenance offer potential to achieve significant cost savings as it accounts for around 20% - 30% of overall offshore wind farm costs. One of the most critical assembly of onshore, offshore and floating wind turbines is the gearbox. Therefore sensing and condition monitoring systems for wind turbines are needed in order to obtain reliable information on the state and condition of different critical parts, focusing towards the detection and/or prediction of damage before it reaches a critical stage. The aim of this paper is the application and evaluation of advanced diagnostic techniques and diagnostic indicators, including the Enhanced Envelope Spectrum and the Spectral Flatness on real world vibration data collected from vibration sensors on gearboxes in multiple wind turbines over an extended period of time of nearly four years. The diagnostic indicators are compared with classical statistic indicators, i.e. Kurtosis, Crest Factor etc. and their effectiveness is evaluated based on the successful detection of two failure events.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3