Heat Transfer in Supercritical Steam Flowing Through Spiral Tubes

Author:

Kanungo Deepak Kumar1,Shrivastava Sachin Kumar1,Singh Nand Kumar1,Sahu Kirti Chandra2

Affiliation:

1. Corporate R&D, Bharat Heavy Electricals Limited, Hyderabad, Telangana 500093, India

2. Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India

Abstract

Abstract We investigate heat transfer in supercritical steam flowing in a spiral tube by conducting three-dimensional numerical simulations. The current numerical solver has been validated with the existing experimental results, and simulations are performed by varying different geometric parameters of a spiral tube. The flow dynamics and heat transfer in a spiral tube are compared against those in a straight tube. For the parameters range considered in the present study, it is found that the heat transfer coefficient (HTC) in the spiral tube is 29% higher than that in the case of a straight tube for the same flow and thermal conditions. Our results indicate that the tangential velocity component resulting due to the spiraling effect of the steam is the primary reason for the enhancement of the HTC value. It is observed that while the HTC in a spiral tube is inversely related to the spiral diameter, it does not exhibit a strong relationship with the spiral pitch. Moreover, three existing heat transfer correlations are evaluated under the spiral flow condition and it is observed that none of them can calculate the HTC value accurately in spiral tubes. Using the Buckingham π-theorem, three modified correlations are proposed for the low, moderate, and high heat flux regimes, which accurately predict the wall temperature and HTC of supercritical steam in spiral tubes in all the heat flux regimes. The correlations have an error band of less than ±20%.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3