Effects of Thickness on the Responses of Piezoresponse Force Microscopy for Piezoelectric Film/Substrate Systems

Author:

Wang J. H.1,Chen C. Q.2

Affiliation:

1. Department of Engineering Mechanics, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China e-mail:

2. Department of Engineering Mechanics, AML & CNMM, Tsinghua University, Beijing 100084, China e-mail:

Abstract

Piezoresponse force microscopy (PFM) extends the conventional nano-indentation technique and has become one of the most widely used methods to determine the properties of small scale piezoelectric materials. Its accuracy depends largely on whether a reliable analytical model for the corresponding properties is available. Based on the coupled theory and the image charge model, a rigorous analysis of the film thickness effects on the electromechanical behaviors of PFM for piezoelectric films is presented. When the film is very thick, analytical solutions for the surface displacement, electric potential, image charge, image charge distance, and effective piezoelectric coefficient are obtained. For the infinitely thin (IT) film case, the corresponding closed-form solutions are derived. When the film is of finite thickness, a single parameter semi-empirical formula agreeing well with the numerical results is proposed for the effective piezoelectric coefficient. It is found that if the film thickness effect is not taken into account, PFM can significantly underestimate the effective piezoelectric coefficient compared to the half space result. The effects of the ambient dielectric property on PFM responses are also explored. Humidity reduces the surface displacement, broadens the radial distribution peak, and greatly enlarges the image charge, resulting in reduced effective piezoelectric coefficient. The proposed semi-empirical formula is also suitable to describe the thickness effects on the effective piezoelectric coefficient of thin films in humid environment. The obtained results can be used to quantitatively interpret the PFM signals and enable the determination of intrinsic piezoelectric coefficient through PFM measurement for thin films.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3