Internally Fired Semi-Closed Cycle Gas Turbine Plant for Naval Propulsion

Author:

DeWitt S. H.1,Boyum W. B.1

Affiliation:

1. Westington Electric Corporation, Philadelphia, PA

Abstract

An Internally fired semi-closed cycle gas turbine for Naval propulsion was designed and built for the U.S. Navy by the Westinghouse Electric Corporation. Due to a revision of the overall Navy propulsion program the plant was not tested at design conditions or mode of operation, but feasibility information for this configuration of gas turbine plant was obtained. Plant tests indicated that this cycle configuration can be expected to attain a significant reduction in shipboard space and weight requirements while matching existing conventional propulsion plant fuel and air consumption rates over a wide load range. The plant further is simply controlled to minimize manning personnel, permit bridge control, and has a brief transient period from cruise power to full load. Plants of this cycle configuration can be expected to produce large powers such as required for main ship propulsion while employing components of the size where considerable industrial experience has been accumulated. Fouling and corrosion of the internally fired, semi-closed cycle gas turbine were evaluated by the tests. Conventional gas turbine components are satisfactory for low sulfur fuel operation, and with additional precooler equipment development it is expected that high sulfur fuel operation will be achieved.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Combined Combustion and System Modeling of Semi-Closed Cycle PoWER Engine;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition;2010-01-04

2. Modeling and experimentation of a novel pressurized CHP system with water extraction;International Journal of Energy Research;2008-09

3. Testing and Modeling of a Semi-Closed Gas Turbine Cycle Integrated With a Vapor Absorption Refrigeration System;Advanced Energy Systems;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3