A Tacholess Order Tracking Method Based on the STFTSC Algorithm for Rotor Unbalance Fault Diagnosis Under Variable-Speed Conditions

Author:

Wu Binyun1,Hou Liang1,Wang Shaojie23,Lian Xiaozhen1

Affiliation:

1. Xiamen University Pen Tung Sah Institute of Micro Nano Science and Technology, , Xiamen 361102 , China

2. Xiamen University Pen Tung Sah Institute of Micro Nano Science and Technology, , Xiamen 361102 , China ;

3. Shenzhen Research Institute of Xiamen University , Shenzhen 518057 , China

Abstract

Abstract Due to the fact that rotors usually operate in a non-stationary mode with changing speeds, the conventional rotor unbalance detection method based on the stationary signal will produce a major “spectrum ambiguity issue” and affect the accuracy of rotor unbalance detection. To this end, a tacholess order tracking method based on the STFTSC algorithm is suggested in this study, where the STFTSC algorithm is developed by combining the short-time Fourier transform and the seam carving algorithm. First, the STFTSC algorithm is utilized to accurately extract the instantaneous frequency (IF) of the rotor and calculate the instantaneous phase under variable-speed conditions. Subsequently, the original signal is resampled in the angular domain to transform the non-stationary time domain signal into a stable angle domain signal, eliminating the effect of the speed variations. Finally, the angular domain signal is transformed into the order domain signal, which uses the discrete Fourier transform and the discrete spectrum correction method to identify the amplitude and phase corresponding to the fundamental frequency component of the signal. The simulation results show that the IF extracted by the STFTSC algorithm has higher extraction accuracy compared with the traditional STFT spectral peak detection method and effectively eliminates the effect of speed fluctuations. A rotor dynamic-balancing experiment shows that the unbalance correction effect based on the STFTSC algorithm is remarkable, with the average unbalance amount decrease rate on the left and right sides being 90.02% and 92.56%, respectively, after a single correction.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3