Locust-Inspired Jumping Mechanism Design and Improvement Based on Takeoff Stability

Author:

Mo Xiaojuan1,Ge Wenjie1,Ren Yifei1,Zhao Donglai1,Wei Dunwen2,Romano Donato34

Affiliation:

1. Northwestern Polytechnical University School of Mechanical Engineering, , 710072 Xi’an, Shaanxi , China

2. University of Electronic Science and Technology of China School of Mechanical and Electrical Engineering, , 611731 Chengdu, Sichuan , China

3. Scuola Superiore Sant’Anna The BioRobotics Institute, , 56127 Pisa , Italy ;

4. Scuola Superiore Sant’Anna Department of Excellence in Robotics and AI, , 56127 Pisa , Italy

Abstract

Abstract Locusts keep their bodies moving in a straight line during the takeoff and maintain the body stable during the whole jumping with small pitching motions, ensuring both kinematic and dynamic stability to reach their intended destinations. Inspired by locusts’ jumping performance, the Stephenson II six-bar jumping mechanism is adopted to mimic the kinematic stability of locusts’ takeoff and a dynamic model is developed to analyze the impacts of the torsional spring location, the spring stiffness, and the location of the equivalent body bar centroid on the jumping performance. Furthermore, a revised eight-bar jumping mechanism is proposed to solve the difficulty in realizing dynamic stability using the six-bar mechanism, as the moments of momentum of each component around the overall centroid are positive and contribute together to the counterclockwise rotation of the jumping. The dynamic modeling shows that the mass of the equivalent tarsus bar plays an important role in realizing the dynamic stability for the eight-bar jumping mechanism. Finally, two kinds of jumping robots are designed, fabricated and tested with jumping performance recorded by high-speed cameras, which validates the impacts of the mass of the equivalent tarsus bar on the jumping stability in the eight-bar jumping mechanism.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3