Age Dependent Mechanical Properties of the Infant Porcine Parietal Bone and a Correlation to the Human

Author:

Baumer Timothy G.1,Powell Brian J.1,Fenton Todd W.2,Haut Roger C.3

Affiliation:

1. Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824

2. Department of Anthropology, College of Social Sciences, Michigan State University, East Lansing, MI 48824

3. Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, A407 East Fee Hall, East Lansing, MI 48824

Abstract

An infant less than 18 months of age with a skull fracture has a one in three chance of abuse. Injury biomechanics are often used in the investigation of these cases. In addition to case-based investigations, computer modeling, and test dummies, animal model studies can aid in these investigations. This study documents age effects on the mechanical properties of parietal bone and coronal suture in porcine infants and correlates the bending properties of the bone to existing human infant data. Three beam specimens were cut from porcine specimens aged 3 days, 7 days, 10 days, 14 days, 18 days, and 21 days: one across the coronal suture and two from the parietal bone, one parallel to and one perpendicular to the coronal suture. An actuator-mounted probe applied four-point bending in displacement control at 25 mm/s until failure. Bending stiffness of bone specimens increased with age; bone-suture-bone specimens showed no change up to 14 days but increased from 14 days to 18 days. All three specimen types showed decreases in ultimate stress with age. Ultimate strain for the bone-suture-bone specimens was significantly higher than that for the bone specimens up to 14 days with no differences thereafter. There was no change in the bending modulus with age for any specimen type. Bone-suture-bone bending modulus was lower than that of the bone specimens up to 14 days with no differences thereafter. There was no change in strain energy to failure with age for the bone specimens; bone-suture-bone specimens showed no change up to 14 days but decreased from 14 days to 18 days. There was an increase in specimen porosity with age. Correlation analysis revealed a weak (−0.39) but significant and negative correlation between ultimate stress and porosity. While the mechanical properties of parietal bone and coronal suture did not change significantly with age, bone specimens showed an increase in bending stiffness with age. Bone-suture-bone specimens showed an increase in bending stiffness only between 14 days and 18 days of age. Correlation analyses using existing and new data to compute the bending rigidity of infant parietal bone specimens suggested that days of pig age may correlate with months of human age during the most common time frame of childhood abuse cases.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3