Dispersion Investigation in the Split Hopkinson Pressure Bar

Author:

Gong J. C.1,Malvern L. E.1,Jenkins D. A.1

Affiliation:

1. Department of Aerospace Engineering, Mechanics, and Engineering Science, University of Florida, Gainesville, FL 32611

Abstract

Dispersion of an elastic wave propagating in a 76.2-mm-diameter (3 in.) Split Hopkinson Pressure Bar system was investigated with two consecutive pulses recorded in the transmitter bar. Assuming that the dispersive high frequency oscillatory components riding on the top of the main pulse originate from the first mode vibration, the dispersion was corrected by using the Fast Fourier Transform (FFT) and Fourier series expansion numerical schemes. The good agreement validates the assumption that only the first mode was significant. The dispersion correction technique was employed in a test of a concrete specimen having the same diameter as that of the SHPB. Better agreement of the two specimen-bar interface stresses versus time and fewer oscillations in the stress-strain curve demonstrated advantages of the application of dispersion corrections.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3