Heat Convection Within an Eccentric Annulus Heated at Either Constant Wall Temperature or Constant Heat Flux

Author:

Mahfouz F. M.1

Affiliation:

1. Department of Mechanical Power,Faculty of Engineering, Menoufia University, P.O. 32511, Egypt

Abstract

Natural heat convection within an annular annulus bounded by two horizontal vertically eccentric long cylinders has been investigated. The annulus inner wall has been heated and maintained at either constant wall temperature CWT or constant heat flux CHF while the outer wall is cooled and maintained at constant temperature. The induced buoyancy driven flow and the associated heat convection are predicted through solving numerically the full conservation equations for mass, momentum, and energy using Fourier spectral method. Beside Rayleigh and Prandtl numbers, the heat convection process in the annulus depends on the annulus radius ratio and eccentricity (normalized by the radius difference). The study considered a moderate range of Rayleigh numbers up to 105 while Prandtl number is fixed at 0.7. The radius ratio is considered up to 3.2 while the eccentricity is varied between − 0.65 and + 0.65. The study has revealed that at certain radius ratio for a given Rayleigh number and eccentricity, the heat transfer is minimum in case of CWT and the mean inner wall temperature is maximum in case of CHF. The study has also shown, in the range considered for controlling parameters, that multiple convection cells only exist in case of CWT and only for positive eccentricity. Moreover, the study has shown that the present numerical solution of the pure conduction problem is almost identical with the newly presented analytical solution which confirms the high accuracy of the numerical solution.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Influence of Vertical Vibration on Natural Heat Convection Coefficients from Horizontal Concentric and Eccentric Annulus;Pertanika Journal of Science and Technology;2023-04-07

2. RETRACTED ARTICLE: Numerical solution for cuttings’ transport in inclined and highly inclined drilling annuli;International Journal for Computational Methods in Engineering Science and Mechanics;2021-09-07

3. Heat transfer within an eccentric annulus containing heat generating fluid;International Journal of Heat and Mass Transfer;2018-06

4. Towards numerical computation of double-diffusive natural convection within an eccentric horizontal cylindrical annulus;International Journal of Numerical Methods for Heat & Fluid Flow;2016-06-06

5. Heat conduction within an elliptic annulus heated at either CWT or CHF;Applied Mathematics and Computation;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3