Kinking of Transversal Interface Cracks Between Fiber and Matrix

Author:

París Federico1,Correa Elena1,Mantič Vladislav1

Affiliation:

1. School of Engineering, Group of Elasticity and Strength of Materials, University of Seville, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Abstract

Under loads normal to the direction of the fibers, composites suffer failures that are known as matrix or interfiber failures, typically involving interface cracks between matrix and fibers, the coalescence of which originates macrocracks in the composite. The purpose of this paper is to develop a micromechanical model, using the boundary element method, to generate information aiming to explain and support the mechanism of appearance and propagation of the damage. To this end, a single fiber surrounded by the matrix and with a partial debonding is studied. It has been found that under uniaxial loading transversal to the fibers direction the most significant phenomena appear for semidebonding angles in the interval between 60deg and 70deg. After this interval the growth of the crack along the interface is stable (energy release rate (ERR) decreasing) in pure Mode II, whereas it is plausibly unstable in mixed mode (dominated by Mode I for semidebondings smaller than 30deg) until it reaches the interval. At this interval the direction of maximum circumferential stress at the neighborhood of the crack tip is approximately normal to the applied load. If a crack corresponding to a debonding in this interval leaves the interface and penetrates into the matrix then: (a) the growth through the matrix is unstable in pure Mode I; (b) the value of the ERR reaches a maximum (in comparison with other debonding angles); and (c) the ERR is greater than that released if the crack continued growing along the interface. All this suggests that it is in this interval of semidebondings (60-70deg) that conditions are most appropriate for an interface crack to kink. Experiments developed by the authors show an excellent agreement between the predictions generated in this paper and the evolution of the damage in an actual composite.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference41 articles.

1. Failure Criteria in Fiber-Reinforced-Polymer Composites (Special Issue);Hinton;Compos. Sci. Technol.

2. World Wide Failure Exercise on Failure Predictions in Composites (Special Issue);Hinton;Compos. Sci. Technol.

3. A Fatigue Failure Criterion for Fiber Reinforced Materials;Hashin;J. Compos. Mater.

4. Micromechanisms in Tension-Compression Fatigue of Composite Plies Containing Transverse Plies;Gamstedt;Compos. Sci. Technol.

5. The Stress Around a Fault of Crack in Dissimilar Media;Williams;Bull. Seismol. Soc. Am.

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3