Buoyant Pulsating Exchange Flow Through a Vent

Author:

Conover T. A.1,Kumar R.1,Kapat J. S.1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 20634

Abstract

Buoyancy-driven bidirectional pulsating exchange flow through a vent in a horizontal partition is studied experimentally using a brine/water system. The associated transient and pulsating exchange flows were studied by densimetric measurements, flow visualization, and laser Doppler velocimetry (LDV) measurements for three different vent length-to-diameter ratios: 0.106, 0.0376, and 0.008. A time scale, based on the rate of decay of the density difference between the two compartments, is developed that collapses all experimental data regarding the decay of density in the top compartment into one curve. Flow visualization was used to understand the flow features contributing to the pulsating flow and to provide a quantitative measure of the major pulsation frequency. Interfacial instability between brine and water at the vent was found to contribute to the pulsation. The pulsation frequencies and their decay were determined from the power spectrum of LDV measurements. For the small length-to-diameter ratios (0.008 and 0.0376) there are two different frequencies that decay at different rates, suggesting multiple flow processes that contribute to flow pulsations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3