Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study

Author:

Mensah Georg A.1,Moeck Jonas P.2

Affiliation:

1. Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, Berlin 10115, Germany e-mail:

2. Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin, Berlin 10115, Germany

Abstract

Thermoacoustic instabilities pose a major threat to modern gas turbines. The use of acoustic dampers, like Helmholtz resonators, has proven useful for the mitigation of such instabilities. However, assessing the effect of acoustic dampers on thermoacoustic modes in annular combustion chambers remains an intricate task. This results from the implicit nature of the thermoacoustic Helmholtz equation associated with the high number of possible parameter values for the positioning of the dampers and their impedance design. In the present work, the principal challenges of the effective placement and the design of the impedance of acoustic dampers in annular chambers are discussed. This includes the choice of an appropriate objective function for the optimization, the combinatorial challenges when dealing with different possible damper arrangements, and the numerical complexities when using the thermoacoustic Helmholtz equation to approach this issue. As a key aspect, the paper proposes a new adjoint-based approach to tackle these problems. The new algorithm establishes algebraic models that predict the effect of acoustic dampers on the growth rates of the thermoacoustic modes. The theory is exemplified on the basis of a generic annular combustor model with 12 burners.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors;Proc. Combust. Inst.,2009

2. Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers;Flow Turbulence Combust.,2012

3. Simulation Methodologies and Open Questions for Acoustic Combustion Instability Studies,2013

4. Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames;AIAA J.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3