The Optimum Height of Winglet Vortex Generators Mounted on Three-Row Flat Tube Bank Fin

Author:

Gao S. D.1,Wang L. B.1,Zhang Y. H.1,Ke F.1

Affiliation:

1. Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P.R. of China

Abstract

Winglet vortex generators can be used to enhance the heat transfer performance of finned flat tube bank fin. The effects of the height of vortex generators (VG) on local heat transfer were studied using the naphthalene sublimation method and the optimum height of winglet VG are screened by using JF, a dimensionless factor of the larger the better characteristics. In order to get JF, the local heat transfer coefficient obtained in experiments and a numerical method were used to get the heat transferred from the fin. For the configurations studied in this paper: for local characteristic, as increasing height of VG, heat transfer is enhanced, but the mostly enhanced region moves away from the tube wall; with increasing height of VG to certain degree, the width of enhanced region does not increase significantly; the effects of VG’s height on span-average Nusselt number (Nu) are more mixed on fin surface mounted with VGs and its back surface, with increasing height of VG, in some region heat transfer is worsened, and in other region heat transfer is enhanced; in real working condition, the heat transferred from fin surface mounted with VGs is larger than the heat transferred from the other surface of the fin; increasing the height of VG (H) increases average Nu and friction factor (f ), but with considering the fin efficiency, there is an optimum H to get best heat transfer performance; the optimum height of VG is dependent on the thickness of fin and its heat conductivity, for mostly used fin thickness and material, the optimum height of VG is 0.8 times of net fin spacing.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3