On the Design of Cable-Suspended Planar Parallel Robots

Author:

Fattah Abbas,Agrawal Sunil K.1

Affiliation:

1. Mechanical Systems Laboratory, Department of Mechanical Engineering, University of Delaware, Newark, DE 19716

Abstract

In this paper we present a workspace analysis methodology that can be applied for optimal design of cable-suspended planar parallel robots. The significant difference between regular parallel robots and cable-suspended parallel robots is that the cables in cable-suspended robots can only carry tension forces. The workspace of a planar cable robot is characterized as the set of points where a reference point of moving platform can reach with tensions in all suspension cables. In the design of cable-suspended parallel robots, the suspension points of the cables, size and shape of the moving platform are the design variables. The workspace area and global condition index are used as the objective functions to optimize the design parameters. The global condition index is a measure of isotropicity of the manipulator. The design variables are determined for different numbers of cables using both objective functions at a specified orientation and also at different orientations of moving platform. Experimental results to measure the workspace area demonstrate the effectiveness of this method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference9 articles.

1. The NIST Robocarne;Albus;J. Rob. Syst.

2. Estimating the controllable workspace of tendon-based Stewart platforms;Verhoeven

3. Cable suspended robots: Design, planning, and control;Alp

4. Kinematic analysis and design of planar mechanisms actuated with cables;Barrette

5. Workspace and design analysis of cable-suspended planar parallel robots;Fattah

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3