Steady Laminar Axisymmetrical Nozzle Flow at Moderate Reynolds Numbers: Modeling and Experiment

Author:

Grandchamp X.1,Fujiso Y.1,Wu B.1,Hirtum A. Van1

Affiliation:

1. GIPSA-lab, UMR CNRS 5216, Grenoble University, Grenoble, 38000 France

Abstract

Flow through an axisymmetrical parameterized contraction nozzle of limited size with area contraction ratio 21.8 and total length 6 cm is studied for moderate Reynolds numbers 300 < Re < 20,200. The transverse flow profiles at the nozzle exit are characterized by hot film anemometry for two different spatial step sizes. The flow at the exit is laminar and uniform in its core. Boundary layer characteristics at the nozzle exit are estimated from the transverse velocity profiles. Flow throughout the nozzle is modeled by implementing Thwaites laminar axisymmetrical boundary layer solutions in an iterative algorithm for which both universal functions, describing the shape factor and skin friction parameters respectively, are altered by adding a constant. The value of the constants is determined by fitting the modified universal functions to tabulated values reported in Blevins (Blevins, R., 1992, Applied Fluid Dynamics Handbook. Krieger, Malabar, FL.). The model is validated on the measured data. Adding nonzero constants to the universal functions improves the prediction of boundary layer characteristics so that the range of Reynolds numbers for which the discrepancy with experimental findings is less than 4% is extended from Re > 3000 to Re > 1000. Therefore, the studied contraction nozzle is of use for applications requiring a small nozzle with known low turbulence flow at the exit such as moderate Reynolds number free jet studies or bio fluid mechanics (respiration, speech production,…) and the flow at the exit of the nozzle can be accurately described by a simple boundary layer algorithm for Re > 1000.

Publisher

ASME International

Subject

Mechanical Engineering

Reference32 articles.

1. A Theoretical and Experimental Investigation of Flow Through Short Axisymmetric Contractions;Kachhara

2. Comprehensive Design of Axisymmetric Wind Tunnel Contractions;Morel;J. Fluid Eng.

3. Optimum Design of Wind Tunnel Contractions;Mikhail;AIAA J.

4. Design Rules for Small Low Speed Wind Tunnels;Metha;Aeronaut. J. R. Aeronaut. Soc.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3