Failure Surface Frontier for Reliability Assessment on Expensive Performance Function

Author:

Shan Songqing1,Wang G. Gary1

Affiliation:

1. Department of Mechanical & Manufacturing Engineering, The University of Manitoba, Winnipeg, MB, Canada, R3T 5V6

Abstract

This work proposes a novel concept of failure surface frontier (FSF), which is a hyper-surface consisting of the set of non-dominated failure points on the limit states of a failure region. Assumptions, definitions, and benefits of FSF are described first in detail. It is believed that FSF better represents the limit states for reliability assessment (RA) than conventional linear or quadratic approximations on the most probable point. Then, a discriminative sampling based algorithm is proposed to identify FSF, based on which the reliability can be directly assessed for expensive performance functions. Though an approximation model is employed to approximate the limit states, it is only used as a guide for sampling and a supplementary tool for RA. Test results on well-known problems show that FSF-based RA on expensive performance functions achieves high accuracy and efficiency, when compared with the state-of-the-art results archived in literature. Moreover, the concept of FSF and proposed RA algorithm are proved to be applicable to problems of multiple failure regions, multiple most probable points, or failure regions of extremely small probability.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference30 articles.

1. An Integrated Framework for Probabilistic Optimization Using Inverse Reliability Strategy;Du;ASME J. Mech. Des.

2. Reliability-Based Design With the Mixture of Random and Interval Variables;Du

3. Application of the Sequential Optimization and Reliability Assessment Method to Structural Design Problems;Liu

4. Efficient Probabilistic Design by Converting Reliability, Constraints to Approximately Equivalent Deterministic Constraints;Wu;Trans. SDPS, J. Integ. Des. Process Sci.

5. Hydrid Analysis Method for Reliability-Based Design Optimization;Youn;ASME J. Mech. Des.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3