Analysis of the Influence of Transient State of the Overhead Pipeline Placed in an Open-Air Space on the Accuracy of its Insulation Assessment Based on the Results of Outer Shell Thermovision Diagnostics

Author:

Kruczek Tadeusz1

Affiliation:

1. Institute of Thermal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland

Abstract

Abstract The proper thermal diagnostics of pipeline insulation is an important problem. The heat losses from the pipelines depend distinctly on the quality of this insulation. Changes in weather conditions cause transient accumulation of energy in the pipeline insulation and may cause difficulties during evaluation of the quality of the pipeline thermal insulation. Generally, the goal of this investigation was to identify the scale of energy accumulation inside thermal insulation. This is important because during the calculation of heat losses from thermal pipelines on the basis of infrared camera temperature measurement results usually a steady thermal state inside the insulation is assumed. In order to determine the distributions of the temperature inside the insulation, the calculations of the temperature changes inside the pipeline insulation for real changeable meteorological conditions with the use of software ansys-fluent and others have been carried out. Both the heat transfer between the inner pipeline tube and outer pipeline shell and energy accumulation inside the pipeline elements were considered. For the pipeline insulation evaluation purpose, different coefficients for the analysis of energy accumulation scale were defined and used. The measurement results of the temperature of inner pipeline tube and outer pipeline shell gathered during the operation of the special experimental rig were used as input data for the aforementioned numerical simulations. In these calculations, they constituted the first (Dirichlet's) boundary condition. The conclusions resulting from this work are useful for specialists involved in the technical evaluation of the thermal protection features of pipelines.

Funder

Silesian University of Technology

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3