Damage Accumulation Mechanisms in Thermal Barrier Coatings

Author:

Newaz G. M.1,Nusier S. Q.1,Chaudhury Z. A.1

Affiliation:

1. Mechanical Engineering Department, Wayne State University, Detroit, MI 48202

Abstract

Progressive damage evolution leading to spallation was investigated in Electron Beam—Plasma Vapor Deposition (EB-PVD) partially stabilized zirconia thermal barrier coating (TBC) applied to Nickel-based single crystal superalloy, Rene N5 with PtAl bondcoat. Thermal cycles were between 200-1177C. Progressive damage evolution was monitored using microscopy on samples subjected to a series of thermal cycles. Fick’s law can describe the thermally grown oxide (TGO) thickness for early cycles. However, at higher number of thermal cycles, damage in the form of microcracks and their link-up results in the development of a larger delamination crack through the TGO layer and monitoring oxide thickness becomes difficult. Thus, both oxidation kinetics and damage appears to play significant roles as they relate to spallation. As the early microcracks coalesce to form a major delamination crack, the susceptibility for TBC buckling is increased. The damage thickness continues to increase with number of thermal cycles indicating a progressive buckling condition. Estimation shows that a delamination crack length of about sixteen times the TBC thickness is needed for the current material system to cause buckling. Progressive microcrack linking to form a large delamination crack followed by progressive buckling of the TBC layer appear to promote spallation. Physical evidence of microcrack link-up and progressive buckling was found in specimens prior to complete spallation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3