Stresses in a Metal Tube Under Both High Radial Temperature Variation and Internal Pressure

Author:

Chang Chieh-Chien123,Chu Wen-Hwa43

Affiliation:

1. The Johns Hopskins University

2. USAF

3. Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Md.

4. Aeronautics Department, The Johns Hopkins University

Abstract

Abstract The paper treats the stress distribution in a metal tube which is subject to a very high radial temperature variation and pressure. The radial temperature distribution across the tube wall and the variations of the modulus of elasticity and the coefficient of thermal expansion are obtained from experimental data, and all these effects of temperature are taken into account in the calculations. The fundamental equations in the case of plane strain and plane stress can be formulated as the nonhomogeneous Whittaker differential equations. The corresponding solutions are obtained by the method of variation of parameters and in terms of Kummer series. An example is shown, and the stress distribution across the wall is given. For comparison, the stress distribution of the case of constant modulus of elasticity and coefficient of expansion is included.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal stresses in anisotropic discs;International Journal of Mechanical Sciences;1976-01

2. Thermal-Stress Analysis of Flat Plate with Temperature-Dependent Thermal Conductivity;Journal of the American Ceramic Society;1975-09

3. Curing Stresses in Composite Laminates;Journal of Composite Materials;1975-01

4. Stresses and strains in the plastic range in an annular disk due to steady-state radial temperature variation;International Journal of Mechanical Sciences;1972-08

5. Thermal stresses at high temperatures in stainless-steel rings by the moiré method;Experimental Mechanics;1966-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3