Affiliation:
1. Polytechnic Institute of Brooklyn, Department of Aeronautical Engineering and Applied Mechanics, Brooklyn, N. Y.
Abstract
Abstract
A numerical method of solution for the nonlinear deflection of thin flat membranes subjected to normal forces as well as forces in the plane of the membrane has been given by Hencky. The equations he solved were first derived by Föppl, and they also follow directly from the von Kármán nonlinear plate equations on formally making the plate stiffness zero. Föppl’s equations are two in number, one being of fourth order and the other second. The unknown quantities are a stress function and the normal displacement. Hencky’s method of solution does not seem capable of easy generalization. The same class of membrane problems is reconsidered here. By casting the problem entirely in terms of displacement components three simultaneous nonlinear second-order partial differential equations are obtained, and a technique is here devised by means of which these equations can be solved without difficulty using finite-difference approximations in conjunction with a relaxation-iteration procedure. Various simple preliminary examples are discussed, after which an example involving a rectangular region is considered in complete detail. The technique devised can be used for a region of any shape, including the case where the boundary is curved, and also for any arbitrary given load system.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献