Thermal Constriction Resistance of Phase-Mixed Metallic Coatings

Author:

Chung K. C.1,Sheffield J. W.1,Sauer H. J.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering and Engineering Mechanics, University of Missouri—Rolla, Rolla, MO 65401

Abstract

A phase-mixed coating using plasma-enhanced deposition onto a cold surface can offer excellent characteristics of adhesion of coatings to a wide range of base materials, and very close control of coating thickness. These physical characteristics are of great importance to the control of surface contact situations and in particular to the thermal constriction resistance of contact joints, with many applications in thermal control systems. Analytical expressions were developed for the thermal constriction resistance of cylindrical contact spots in such coatings. The thermal constriction parameter was presented in the dimensionless form as a function of the contact geometry, coating thickness, and thermal conductivity ratio of the two different coating materials. Finally, the results of analytical thermal constriction resistance were compared with experimental investigation using copper-carbon and silver-carbon phase-mixed coating materials. Conclusions on selecting phase-mixed coating materials were based solely on the thermal point of view

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Thermal Conductance Models for Joints Incorporating Enhancement Materials;Journal of Thermophysics and Heat Transfer;2003-01

2. Review of thermal conductance models for joints incorporating enhancement materials;40th AIAA Aerospace Sciences Meeting & Exhibit;2002-01-14

3. Control of Thermal Contact Conductance Using Interstitial Materials;Mechanical Engineering Series;1996

4. Effect of surface deformations on thermal contact conductance of coated junctions;Journal of Thermophysics and Heat Transfer;1995-10

5. Heat transfer — a review of 1992 literature;International Journal of Heat and Mass Transfer;1994-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3