Correlating Cavity Sealing Effectiveness to Time-Resolved Rim Seal Events in the Presence of Vane Trailing Edge Flow

Author:

Siroka Shawn1,Monge-Concepción Iván1,Berdanier Reid A.1,Barringer Michael D.1,Thole Karen A.1,Robak Christopher2

Affiliation:

1. The Pennsylvania State University, University Park, Pennsylvania, United States

2. Pratt & Whitney, East Hartford, Connecticut, United States

Abstract

Abstract The cavity region between the rotor and stator relies on hardware seals and purge flow to discourage hot gas path air from being ingested into the unprotected wheel space. However, ingestion can occur due to a combination of disk pumping, periodic vane-blade interactions, and three-dimensional seal geometry effects. These mechanisms create flow instabilities that are detrimental to cavity seal performance under certain conditions. In this paper, a one-stage turbine operating at engine representative conditions was utilized to study the effect of steady and time-resolved under-platform cavity temperatures and pressures across a range of coolant flow rates in the presence of vane trailing edge (VTE) flow. This study correlates time-resolved pressure with time-resolved temperature to identify primary frequencies driving ingestion. At certain flow rates, the time-resolved pressures are out of phase with the temperatures, indicating ingestion. These same flow rates were found to correlate to an inflection region in the cooling effectiveness curve where the maximum amplitude of the time-varying behavior coincides with the cooling effectiveness inflection point. Using a time-accurate computational model, simulations near this inflection region illustrate ingestion of high-swirl VTE flow into the cavity region which creates a buffer in the rim seal between swirled main gas path flow and axially injected purge coolant helping to suppress the amplitude of time-resolved behavior.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3