Modeling of Workpiece Location Error Due to Fixture Geometric Error and Fixture-Workpiece Compliance

Author:

Raghu Anand1,Melkote Shreyes N.1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

Several fixture-related error sources contribute to workpiece location error in a machining system. Inaccurate part placement in the fixture relative to the cutting tool, for example, can negatively affect the quality of the part. In this paper, the following major sources of error are considered: fixture geometric error and elastic deformation of the fixture and workpiece due to fixturing forces. The workpiece location error is predicted by modeling the process of part loading (given fixture geometric variations) and clamping (given deformations at the contact points) in a machining fixture. Linear elastic models for the fixture elements, contact mechanics models for the contact regions, and flexibility influence coefficients to capture the bulk elasticity of the workpiece have been used to model the compliance of the entire fixture-workpiece system. The deformations at the contact points are obtained by solving a constrained optimization model. The effect of geometric errors and compliance on workpiece location error is examined using part response points as a measure of quality. Experimental validation is also provided for several fixture-workpiece variable levels using a 3-2-1 machining fixture.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical and experimental study on the processing deformation of slender beam structural parts of Ti6Al4V;The International Journal of Advanced Manufacturing Technology;2024-05-11

2. Impact of Technological System’s Characteristics on the Machining Accuracy of Bearing Rings;Journal of Engineering Sciences;2023

3. Locator Placement Optimization for Minimum Part Positioning Error During Machining Operation Using Genetic Algorithm;International Journal of Precision Engineering and Manufacturing;2021-03-25

4. Modeling of stiffness characteristic on evaluating clamping scheme of milling of thin-walled parts;The International Journal of Advanced Manufacturing Technology;2021-02-15

5. Analysis of Clamping Reasonability;Advanced Fixture Design Method and Its Application;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3