Taking the Guess Work Out of the Initial Guess: A Solution Interval Method for Least-Squares Parameter Estimation in Nonlinear Models

Author:

Zhang Guanglu1,Allaire Douglas2,Cagan Jonathan1

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

Abstract Fitting a specified model to data is critical in many science and engineering fields. A major task in fitting a specified model to data is to estimate the value of each parameter in the model. Iterative local methods, such as the Gauss–Newton method and the Levenberg–Marquardt method, are often employed for parameter estimation in nonlinear models. However, practitioners must guess the initial value for each parameter to initialize these iterative local methods. A poor initial guess can contribute to non-convergence of these methods or lead these methods to converge to a wrong or inferior solution. In this paper, a solution interval method is introduced to find the optimal estimator for each parameter in a nonlinear model that minimizes the squared error of the fit. To initialize this method, it is not necessary for practitioners to guess the initial value of each parameter in a nonlinear model. The method includes three algorithms that require different levels of computational power to find the optimal parameter estimators. The method constructs a solution interval for each parameter in the model. These solution intervals significantly reduce the search space for optimal parameter estimators. The method also provides an empirical probability distribution for each parameter, which is valuable for parameter uncertainty assessment. The solution interval method is validated through two case studies in which the Michaelis–Menten model and Fick’s second law are fit to experimental data sets, respectively. These case studies show that the solution interval method can find optimal parameter estimators efficiently. A four-step procedure for implementing the solution interval method in practice is also outlined.

Funder

Defense Advanced Research Projects Agency

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference50 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3