A Novel Multi-Fidelity Surrogate for Efficient Turbine Design Optimization

Author:

Wang Qineng1,Song Liming1,Guo Zhendong1,Li Jun1,Feng Zhenping1

Affiliation:

1. Xi’an Jiaotong University Institute of Turbomachinery, , Xi’an 710049 , China

Abstract

Abstract To solve the turbine design optimization problems efficiently, surrogate-based optimization algorithms are frequently used. To further reduce the cost of turbine design, the multi-fidelity surrogate (MFS)-based optimization is proposed by the researchers, who resort to augmenting the small number of expensive high-fidelity (HF) samples by a large portion of low-fidelity (LF) but cheap samples in surrogate modeling and optimization process. Nonetheless, according to our observations, the MFS-based optimization sometimes can only have better convergence rate at the early stage of optimization process, but yielding worse final solution than the single-fidelity surrogate (SFS)-based optimization that uses high-fidelity samples alone. The reason behind can be explained as follows. With the increase of HF samples in the optimization process, the LF samples can cause negative effect and therefore misleading the optimization search. To address the above issue, an ensemble weighted multi-fidelity surrogate (EMFS) is proposed. Specifically, the density-based spatial clustering of applications with noise is used to detect the region where the MFS cannot build a more accurate surrogate, and a local SFS is built there. Then, an EMFS is built by combining the MFS and SFS with adaptive weights, which is used to guide the optimization process. The related algorithm is named as multi- and single-fidelity surrogate fused optimization (MSFO). Through tests on GE-E3 blade optimization and the film cooling layout design of a turbine endwall, the effectiveness of proposed MSFO is well demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3