Truncation Error Based Mesh Optimization

Author:

Jackson Charles W.1,Roy Christopher J.1,Schrock Christopher R.2

Affiliation:

1. Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061

2. Computational Sciences Center, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

Abstract Truncation error is used to drive mesh adaptation in order to reduce the discretization error in solutions to a variety of 1D and 2D flow problems. The adaptation is performed using r-adaptation to move the mesh nodes in the domain in an attempt to reduce the truncation error since it is the local source of discretization error. Here, we present a new set of r-adaptation methods called mesh optimization along with three different ways of performing this type of adaptation. Each of these techniques uses a finite difference gradient-based local optimization technique with different sets of design variables to create a mesh that minimizes a functional based on truncation error. These new truncation error based mesh optimization techniques are compared to a more common truncation error based mesh equidistribution technique. Some observations on the performance and behavior of the different adaptation methods and best practices for their use are presented. All of the optimization methods are shown to reduce the truncation error one or two orders of magnitude and the discretization error by roughly one order of magnitude for the 1D problems tested. In two dimensions, the optimization-based adaptation methods are able to reduce the discretization error by up to a factor of seven. Mesh equidistribution achieved similar levels of improvement for much less cost compared to the mesh optimization techniques.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3