Surface to Through-Wall Crack Transition Model for Circumferential Cracks in Pipes

Author:

Shim Do Jun1,Park Jeong-Soon2,Kurth Robert3,Rudland David L.4

Affiliation:

1. Structural Integrity Associates, Inc., 5215 Hellyer Ave. Suite 210, San Jose, California 95138, U.S.A.

2. Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon, 305-338, South Korea

3. Engineering Mechanics Corporation of Columbus, 3518 Riverside Drive, Suite 202, Columbus, Ohio 43221, U.S.A.

4. U.S. Nuclear Regulatory Commission, 11555 Rockville Pike, Rockville, MD 20852-2738

Abstract

Abstract In the present paper, finite element analyses were performed to update and also extend the applicable ranges of the existing KI and COD solutions for non-idealized through-wall cracks. Then, a surface to through-wall crack transition model was proposed based on these solutions. The proposed model provides a criterion which determines when the final surface crack should transition to a through-wall crack. It also provides a criterion to determine the two crack lengths (at the inner and outer diameter surfaces) of the initial non-idealized through-wall crack. Furthermore, crack growth of non-idealized through-wall cracks can be simulated by using the proposed method. Finally, the proposed model was verified by demonstrating that it can well predict the surface to through-wall transition behavior when compared to the natural crack growth simulations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3