Affiliation:
1. Department of Mechanical Engineering and Applied Mechanics
2. Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, Philadelphia, PA 19104-6081
Abstract
The objective of this study was to develop a nonlinear and anisotropic three-dimensional mathematical model of tendon behavior in which the structural components of fibers, matrix, and fiber-matrix interactions are explicitly incorporated and to use this model to infer the contributions of these structures to tendon mechanical behavior. We hypothesized that this model would show that: (i) tendon mechanical behavior is not solely governed by the isotropic matrix and fiber stretch, but is also influenced by fiber-matrix interactions; and (ii) shear fiber-matrix interaction terms will better describe tendon mechanical behavior than bulk fiber-matrix interaction terms. Model versions that did and did not include fiber-matrix interaction terms were applied to experimental tendon stress-strain data in longitudinal and transverse orientations, and the R2 goodness-of-fit was evaluated. This study showed that models that included fiber-matrix interaction terms improved the fit to longitudinal data (RToe2=0.88,RLin2=0.94) over models that only included isotropic matrix and fiber stretch terms (RToe2=0.36,RLin2=0.84). Shear fiber-matrix interaction terms proved to be responsible for the best fit to data and to contribute to stress-strain nonlinearity. The mathematical model of tendon behavior developed in this study showed that fiber-matrix interactions are an important contributor to tendon behavior. The more complete characterization of mechanical behavior afforded by this mathematical model can lead to an improved understanding of structure-function relationships in soft tissues and, ultimately, to the development of tissue-engineered therapies for injury or degeneration.
Subject
Physiology (medical),Biomedical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献