Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting

Author:

Subbiah Sathyan1,Melkote Shreyes N.1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Orthogonal cutting experiments using a quick-stop device are performed on Al2024-T3 and OFHC copper to study the chip–workpiece interface in a scanning electron microscope. Evidence of ductile tearing ahead of the tool at cutting speeds of 150m∕min has been found. A numerical finite element model is then developed to study the energy consumed in material separation in micro-cutting. The ductile fracture of Al2024-T3 in a complex stress state ahead of the tool is captured using a damage model. Chip formation is simulated via the use of a sacrificial layer and sequential elemental deletion in this layer. Element deletion is enforced when the accumulated damage exceeds a predetermined value. A Johnson–Cook damage model that is load history dependent and with strain-to-fracture dependent on stress, strain rate, and temperature is used to model the damage. The finite element model is validated using the cutting forces obtained from orthogonal micro-cutting experiments. Simulations are performed over a range of uncut chip thickness values. It is found that at lower uncut chip thickness values, the percentage of energy expended in material separation is higher than at higher uncut chip thicknesses. This work highlights the importance of the energy associated with material separation in the nonlinear scaling effect of specific cutting energy in micro-cutting.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference44 articles.

1. The Size Effect in Metal Cutting;Shaw;Sadhana: Proc., Indian Acad. Sci.

2. Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-cutting;Liu;J. Manuf. Sci. Eng.

3. A Quantized Theory of Strain Hardening as Applied to Cutting of Metals;Shaw;J. Appl. Phys.

4. Effect of Strain-Rate Sensitivity on Scale Phenonmenon in Chip Formation;Larsen-basse

5. Size Effects in Metal Removal Process;Kopalinsky

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3