Numerical and Experimental Study of Flow and Convective Heat Transfer on a Rotor of a Discoidal Machine With Eccentric Impinging Jet

Author:

Haidar Chadia1,Boutarfa Rachid1,Sennoune Mohamed2,Harmand Souad34

Affiliation:

1. Mechanical Engineering, Industrial Management and Innovation Laboratory, Faculty of Science and Techniques, Hassan 1st University, Settat 2600, Morocco

2. IPOSI Laboratory, National School of Applied Sciences, Hassan 1st University, Khouribga 25000, Morocco

3. Université de Lille Nord de France, F-59000 Lille, France

4. Department of TEMPO-DF2T, University Polytechnic of Hauts-de-France (UVHC), Famars, 59313 Valenciennes, France

Abstract

Abstract Discoidal rotor–stator systems are especially used in rotating machines and in numerous industrial applications. The design of high-power machine requires compliance with certain cooling-related stresses. Using an air jet impinging on a rotating disk is one way to increase the global heat exchange. This work focuses on the numerical and experimental study of convective heat transfer in a rotor of a discoidal machine with an eccentric impinging jet. Convective heat transfers are determined experimentally in steady state on the surface of a single rotating disk. The experimental technique is based on the use of infrared thermography to access surface temperature measurement and on the numerical resolution of the energy equation in steady state to evaluate local convective coefficients. The results from the numerical simulation are compared with heat transfer experiments for rotational Reynolds numbers between 2.38 × 105 and 5.44 × 105 and for the jet's Reynolds numbers ranging from 16.5 × 103 to 49.6 × 103. A good agreement between the two approaches was obtained in the case of a single rotating disk, which confirms us in the choice of our numerical model. On the other hand, a numerical study of the flow and convective heat transfer in the case of an unconfined rotor–stator system with an eccentric air jet impinging and for a dimensionless spacing G = 0.02 was carried out. The results obtained revealed the presence of different heat transfer zones dominated either by rotation only, by the air flow only, or by the dynamics of the rotation flow superimposed on that of the air flow. Critical radii on the rotor surface have been identified.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow and Convective Exchanges Study in Rotor-Stator System With Eccentric Impinging Jet;ASME Journal of Heat and Mass Transfer;2023-02-03

2. Effect of Freeze Pipe Eccentricity in Selective Artificial Ground Freezing Applications;Journal of Thermal Science and Engineering Applications;2021-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3