Measurement of Hysteresis Energy Using Digital Image Correlation With Application to Energy-Based Fatigue Life Prediction

Author:

Celli Dino1,Herman Shen M.-H.2,Holycross Casey3,Scott-Emuakpor Onome3,George Tommy3

Affiliation:

1. Mem. ASME Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210 e-mail:

2. Fellow ASME Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210 e-mail:

3. Mem. ASME Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson AFB, OH 45433 e-mail:

Abstract

A modified experimental method using digital image correlation (DIC), a noncontact optical method for measuring full-field displacements and strains, is used to interrogate accumulated fatigue damage for low and high cycle fatigue at continuum scales. Previous energy-based fatigue life prediction methods have shown that cyclic strain energy dissipated during fatigue acts as a key damage parameter for accurate determination of total and remaining fatigue life. DIC enables the collection of accurate strain energy measurements or damaging energy of complex geometries that would otherwise be exceedingly difficult and time consuming using traditional strain measurement techniques. Thus, the use of DIC to obtain strain energy measurements of gas turbine engine (GTE) components is highly advantageous for energy-based fatigue life prediction methods. Presented in this study is the experimental characterization of the cyclic strain energy dissipation as a means of predicting fatigue performance and assessment of damage progression of Aluminum 6061 subjected to fully reversed axial fatigue loading utilizing DIC. Validation of total and cyclic strain energy dissipation DIC measurements is accomplished with the simultaneous use of axial extensometery for direct comparison and implementation to strain energy-based life prediction methods.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Image Correlation and Its Role in NDE;Materials Evaluation;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3