Modeling of a High-Temperature Latent Heat Thermal Storage Module for Brayton Cycle Applications

Author:

Gehring Brian1,Miller Fletcher1

Affiliation:

1. San Diego State University, San Diego, CA

Abstract

Concentrating solar power (CSP) plants with thermal energy storage offer several advantages to plants without storage. Thermal energy storage (TES) allows CSP plants to produce power for longer periods of time each day, making them produce energy more like traditional, fossil fuel power plants. TES also gives the ability to time shift production of energy to times of peak demand, allowing the plant to sell the energy when prices are highest. A CSP plant with storage can increase turbine performance and reach higher levels of efficiency by load leveling production and can remain productive through cloud transients. Power tower CSP plants are capable of producing extremely high temperatures, as they have the ability to oversize their solar field and achieve a greater concentration ratio. Studies have been conducted on variable working fluids, leading to higher working temperatures. This theoretically allows power towers to use more efficient, higher temperature cycles including the recuperated air Brayton cycle, although none currently exist on a commercial scale. This research focuses on developing a model of a high temperature TES system for use with an air Brayton cycle for a power tower CSP plant. In this research we model one module of a latent heat TES system designed to meet the thermal needs of a recuperated Brayton engine of 4.6 MWe capacity for six hours. A metal alloy, aluminum-silicide (AlSi), is considered as the phase change medium. The storage tank is approximately 161 m3, or a cylinder with a 5 m diameter that is 8 m tall filled with AlSi with several air pipes throughout the volume. We model the volume around a single pipe in a 2-D cylindrical coordinate system, for a module size of 0.2 m in diameter and 8 m long. The advantages of using AlSi alloys is that they have variable melting temperatures depending on the relative concentration of the two metals, from 577 C for the eutectic composition of 12.6% silicon to 1411 C for 100% silicon. This attribute is taken advantage of by the TES model as the composition of the AlSi alloy will vary axially. This will allow a cascaded type storage system within one tank and with one material. The use of FLUENT to model this problem is first validated by several analytical solutions including Neumann’s exact solution for a one-dimensional Cartesian geometry and the Quasi-Steady Approximation in a 1-D cylindrical geometry. The model developed will establish charge/discharge times for the storage system, round-trip efficiency of the system, ability of the system to meet the demand of the Brayton cycle, and the validity of using off-eutectic metal alloys in a cascade as a latent heat TES medium.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3