Characterization of Pyromark 2500 for High-Temperature Solar Receivers

Author:

Ho Clifford K.1,Mahoney A. Roderick1,Ambrosini Andrea1,Bencomo Marlene1,Hall Aaron1,Lambert Timothy N.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, NM

Abstract

Pyromark 2500 is a silicone-based high-temperature paint that has been used on central receivers to increase solar absorptance. The cost, application, curing methods, radiative properties, and absorber efficiency of Pyromark 2500 are presented in this paper for use as a baseline for comparison to high-temperature solar selective absorber coatings currently being developed. The directional solar absorptance was calculated from directional spectral absorptance data, and values for pristine samples of Pyromark 2500 were as high as 0.96–0.97 at near normal incidence angles. At higher irradiance angles (>40°–60°), the solar absorptance decreased. The total hemispherical emittance of Pyromark 2500 was calculated from spectral directional emittance data measured at room temperature and 600°C. The total hemispherical emittance values ranged from ∼0.80–0.89 at surface temperatures ranging from 100°C – 1,000°C. The aging and degradation of Pyromark 2500 with exposure at elevated temperatures were also examined. Previous tests showed that solar receiver panels had to be repainted after three years due to a decrease in solar absorptance to 0.88 at the Solar One central receiver pilot plant. Laboratory studies also showed that exposure of Pyromark 2500 at high temperatures (750°C and higher) resulted in significant decreases in solar absorptance within a few days. However, at 650°C and below, the solar absorptance did not decrease appreciably after several thousand hours of testing. Finally, the absorber efficiency of Pyromark 2500 was determined as a function of temperature and irradiance using the calculated solar absorptance and emittance values presented in this paper.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3