Coupled Fluid Flow and Radiation Modeling of a Cylindrical Small Particle Solar Receiver

Author:

Crocker Adam1,Miller Fletcher1

Affiliation:

1. San Diego State University, San Diego, CA

Abstract

This research expands on previous work by coupling the in-house Monte Carlo Ray Trace (MCRT) radiation model with the more sophisticated fluid dynamics modeling capabilities of ANSYS FLUENT. This allows for the inclusion of more realistic inlet and outlet geometries in the receiver, as well as a turbulence model and much finer grid sizing. Taken together, these features give a more complete picture of the heat transfer, mixing, and temperature profiles within the receiver than previous models. This flow solution is coupled to the MCRT code, by using the in-house MCRT radiation solver to provide the source term of the energy equation. The temperature data output from FLUENT is then fed back into the FORTRAN MCRT code, via a User Defined Function written in C#, and the two models iterate until convergence. The solar input has been modified from the previous model to provide a Gaussian fit to a calculated flux distribution, which is more realistic than a uniform flux. Initial results for a 5 MW solar input agree with the trend identified in Ruther’s work regarding the influence of particle mass loading on heating in the receiver. The maximum outlet temperature reached is 1430K, which is on target for driving a Brayton cycle gas turbine. Cylinder wall temperatures are consistently below those of the gas boundary layer, and significantly below the maximum gas temperature in the receiver cavity.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3