Friction Reduction by Piston Ring Pack Modifications of a Lean-Burn 4-Stroke Natural Gas Engine: Experimental Results

Author:

Quillen Kris1,Stanglmaier Rudolf H.1,Moughon Luke2,Takata Rosalind2,Wong Victor2,Reinbold Ed3,Donahue Rick3

Affiliation:

1. Colorado State University, Fort Collins, CO

2. Massachusetts Institute of Technology, Cambridge, MA

3. Waukesha Engine Dresser

Abstract

A project to reduce frictional losses from natural gas engines is currently being carried out by a collaborative team from Waukesha Engine Dresser, Massachusetts Institute of Technology (MIT) and Colorado State University (CSU). This project is part of the Advanced Reciprocating Engine System (ARES) program led by the US Department of Energy. Previous papers have discussed the computational tools used to evaluate piston-ring/cylinder friction and described the effects of changing various ring pack parameters on engine friction. These computational tools were used to optimize the ring pack of a Waukesha VGF 18-liter engine, and this paper presents the experimental results obtained on the engine test bed. Measured reductions in friction mean effective pressure (FMEP) were observed with a low tension oil control ring (LTOCR) and a skewed barrel top ring (SBTR). A negative twist second ring (NTSR) was used to counteract the oil consumption increase due to the LTOCR. The LTOCR and SBTR each resulted in a ∼ 0.50% improvement in mechanical efficiency (ηmech).

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lubrication and Friction;Encyclopedia of Automotive Engineering;2014-04-22

2. Tri-Axial Force Measurements on the Cylinder of a Motored SI Engine Operated on Lubricants of Differing Viscosity;Journal of Engineering for Gas Turbines and Power;2010-06-18

3. Characterization of Particulate Matter Emissions From a Four-Stroke, Lean-Burn, Natural Gas Engine;Journal of Engineering for Gas Turbines and Power;2008-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3