Cumulative Microslip in Conrod Big End Bearing System

Author:

Ligier Jean-Louis1,Antoni Nicolas2

Affiliation:

1. Renault S.A.S., Rueill-Malmaison Cedex, France

2. Universite´ de Savoie, Le Bourget du Lac, France

Abstract

High combustion gas pressure and mass reduction of modern automotive engines have generated new problems in mechanical assemblies. For example, it is now common to observe bearing shell rotation in the conrod of automotive prototype engines at the design stage. The consequence is sometimes the seizure of the bearing due to the presence of the joint face relief in the loaded area. Physically, the bearing shell rotation results from cumulated microslip between the bearing and the conrod. To have a better physical approach of the phenomenon and propose design recommendations, we have performed analyses based on the strength of material theory and numerical modellings. These tools permit us to obtain simple models allowing an easier mechanical understanding as well as an analysis of sensitivity to different parameters. The main results presented in this paper are: • The basic description of the phenomenon, • The modelling of the conrod, its sensitivity to deformation and numerical validation, • The analysis of the microslip between the bearing shell and the conrod, • The sensitivity analysis with respect to conception and physical parameters.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interference and thickness design of bushing of connecting rod small end for Anti-loosening;Engineering Failure Analysis;2021-09

2. Few problems with regularized Coulomb law;Mechanics & Industry;2015

3. Actual and modeled behavior of hydrodynamic bearings in thermal engine;Mécanique & Industries;2009-03

4. Slip-shakedown analysis of a system of circular beams in frictional contact;International Journal of Solids and Structures;2008-09

5. On the cumulative microslip phenomenon;European Journal of Mechanics - A/Solids;2007-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3