Flow Patterns in High Pressure Steam Turbines During Low-Load Operation

Author:

Binner Matthias1,Seume Joerg R.2

Affiliation:

1. MTU Maintenance Hannover GmbH, Muenchner Strasse 31, Langenhagen 30855, Germany e-mail:

2. Institute of Turbomachinery and Fluid Dynamics, Leibniz University Hannover, Appelstrasse 9, Hannover 30167, Germany e-mail:

Abstract

Due to the legislative efforts of promoting renewable energy sources, electricity from these sources is preferentially fed into the electrical grid. This requires more frequent part- and low-load operation of peak- and even of base-load power plants to compensate for the varying energy output of renewable energy sources. These requirements ultimately lead to an increased part- and low-load operation not only of low pressure (LP) steam turbines but also of high pressure (HP) steam turbines, putting them at risk of damage due to windage, i.e., strongly separated flow with associated heat generation. For the first time measurements of the steady-state flow field in a 7-stage model air turbine with a modern HP steam turbine blading are conducted in order to extend the understanding of the part- and low-load operation from LP to HP steam turbines. In comparison with LP steam turbines, similar flow fields develop during windage. However, differences exist especially concerning the vortex development in front of the turbine vane rows. The present, geometrically realistic 7-stage turbine, unlike other turbines investigated before, does not show these vortices, which is explained by the shape of the vane passages of this turbine blading. Furthermore, steady-state flow field measurements at different rotor speeds show that the flow coefficient can be used as a nondimensional parameter for maintaining flow field similarity even in part- or low-load operation. Additionally, unsteady circumferential pressure measurements show the existence of pressure perturbations moving circumferentially in front of the stage 7 blades. Seven pressure perturbations moving at 60% of the rotor speed are identified. Due to the shrouded design of the HP steam turbine blading used, the pressure perturbations are not due to tip leakage vortices. Hence, they are identified as features which are similar to “Rotating Stall” cells known from compressors.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Dampfturbinen Fuer Grosse Heizkraftwerke;(Steam Turbines for Large District Heating Power Plants), in German, VGB Kraftwerkstechnik,1995

2. An Experimental Investigation of Partial Operation Conditions of Turbine Stages;Ergomasinostroenie,1977

3. Distinguishing Features of the Operation LPT Last Stages at Low Loads and Under No Load Conditions;Teploenergetika,1971

4. Bergmann, D., Gloger, M., May, G., and Gartner, G., 1985, “High Temperature Control in High Backpressure LP Turbines,” Proceedings of the 47th American Power Conference, Chicago, IL, April 22–24.

5. Advanced LP Turbine Blade Design,1990

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3