Lumen Irregularity Dominates the Relationship Between Mechanical Stress Condition, Fibrous-Cap Thickness, and Lumen Curvature in Carotid Atherosclerotic Plaque

Author:

Teng Zhongzhao1,Sadat Umar1,Ji Guangyu2,Zhu Chengcheng1,Young Victoria E.1,Graves Martin J.1,Gillard Jonathan H.1

Affiliation:

1. Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK

2. Division of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China

Abstract

High mechanical stress condition over the fibrous cap (FC) has been widely accepted as a contributor to plaque rupture. The relationships between the stress, lumen curvature, and FC thickness have not been explored in detail. In this study, we investigate lumen irregularity-dependent relationships between mechanical stress conditions, local FC thickness (LTFC), and lumen curvature (LClumen). Magnetic resonance imaging slices of carotid plaque from 100 patients with delineated atherosclerotic components were used. Two-dimensional structure-only finite element simulations were performed for the mechanical analysis, and maximum principal stress (stress-P1) at all integral nodes along the lumen was obtained. LTFC and LClumen were computed using the segmented contour. The lumen irregularity (L-δir) was defined as the difference between the largest and the smallest lumen curvature. The results indicated that the relationship between stress-P1, LTFC, and LClumen is largely dependent on L-δir. When L-δir≥1.31 (irregular lumen), stress-P1 strongly correlated with lumen curvature and had a weak/no correlation with local FC thickness, and in 73.4% of magnetic resonance (MR) slices, the critical stress (maximum of stress-P1 over the diseased region) was found at the site where the lumen curvature was large. When L-δir≤0.28 (relatively round lumen), stress-P1 showed a strong correlation with local FC thickness but weak/no correlation with lumen curvature, and in 71.7% of MR slices, the critical stress was located at the site of minimum FC thickness. Using lumen irregularity as a method of identifying vulnerable plaque sites by referring to the lumen shape is a novel and simple method, which can be used for mechanics-based plaque vulnerability assessment.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3