Comparison of Piston Concept Design Solutions for Composite Cycle Engines—Part I: Similarity Considerations

Author:

Chatzianagnostou Dimitrios1,Staudacher Stephan1

Affiliation:

1. Institute of Aircraft Propulsion Systems, University of Stuttgart, Stuttgart 70569, Germany e-mail:

Abstract

Composite cycle engines comprising piston engines (PEs) as well as piston compressors (PCs) to achieve hecto pressure ratios represent a target area of current research surpassing gas turbine efficiency. An unclear broad range of design parameters is existing to describe the design space of piston machines for this type of engine architecture. Previously published work focuses on thermodynamic studies only partially considering limitations of the design space. To untie the problem of PE design, a dimensional analysis is carried out reducing the number of parameters and deriving two basic similarity relations. The first one is a function of the mean effective pressure as well as the operating mode and is a direct result from the thermodynamic cycle. The second one is constituted of the stroke-to-bore ratio and the ratio of effective power to piston surface. Similarity relations regarding the PC design are based on Grabow (1993, “Das erweiterte “Cordier”—Diagramm Für Fluidenergiemaschinen und Verbrennungsmotoren,” Forsch. Ingenieurwes., 59, pp. 42–50). A further correlation for PCs is based on the specific compression work and the piston speed. In Part I, data of existing PEs have been subjected to the above similarity parameters unveiling the state-of-the-art design space. This allows a first discussion of current technological constraints. Applying this result to the composite cycle engine gives the design space and a first classification as a low-speed engine. Investigating various design points in terms of number and displacement volume of cylinders confirms the engine speed classification. Part II will expand this investigation using preliminary design studies.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Piston Concept Design Solutions for Composite Cycle Engines Part II: Design Considerations;Journal of Engineering for Gas Turbines and Power;2021-03-31

2. Cycle Optimization Potential of Composite Cycle and Turbocompound Aero-Engines;Journal of Engineering for Gas Turbines and Power;2020-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3