Prediction of the Transient Thermodynamic Response of a Closed-Cycle Regenerative Gas Turbine

Author:

Korakianitis T.1,Hochstein J. I.2,Zou D.3

Affiliation:

1. University of Glasgow, Glasgow G12 8QQ, UK

2. Memphis State University, Memphis, TN 38152

3. Department of Physical Therapy, Washington University, St. Louis, MO 63130

Abstract

Instantaneous-response and transient-flow component models for the prediction of the transient response of gas turbine cycles are presented. The component models are based on applications of the principles of conservation of mass, energy, and momentum. The models are coupled to simulate the system transient thermodynamic behavior, and used to predict the transient response of a closed-cycle regenerative Brayton cycle. Various system transients are simulated using: the instantaneous-response turbomachinery models coupled with transient-flow heat-exchanger models; and transient-flow turbomachinery models coupled with transient-flow heat-exchanger models. The component sizes are comparable to those for a solar-powered Space Station (radial turbomachinery), but the models can easily be expanded to other applications with axial turbomachinery. An iterative scheme based on the principle of conservation of working-fluid mass in the system is used to compute the mass-flow rate at the solar-receiver inlet during the transients. In the process the mass-flow rate of every component at every time step is also computed. Representative results of different system models are compared and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3